师资队伍

唐建石 准聘副教授

联系电话:+86-10-62784074

E-mail:jtang@tsinghua.edu.cn

通信地址:北京市海淀区bat365官网登录入口C314,邮编100084

唐建石2008年本科毕业于清华大学微纳电子系2014年博士毕业于美国UCLA电子工程系2015-2019年在美国IBM T. J. Watson Research Center工作2019年回清华大学工作,现任bat365官网登录入口副教授,入选国家海外高层次人才计划、《麻省理工科技评论》35岁以下科技创新35中国区榜单先后获清华大学学术新人奖、中国电子学会自然科学一等奖、中国新锐科技人物卓越影响奖、IEEE Brain Best Paper AwardNT18“Best Young Scientist Award”等奖项。主要研究方向包括新型存储器与类脑计算、单片三维异质集成等,主要研究方向包括新型存储器与类脑计算,先后主持科技部青年科学家项目、基金委重点项目、北方先进工艺研究院等项目。近年来在NatureScienceNature NanotechnologyNature ElectronicsNature CommunicationsScience AdvancesAdvanced MaterialsIEDMVLSIISSCC等知名期刊和国际会议上发表论文160余篇,被引用10000余次,撰写图书章节6章,相关成果入选北京地区广受关注学术论文 申请国内外专利180余项,授权60余项,部分成果转化北京芯力技术创新中心、北京忆元科技有限公司。担任IEEE Transactions on Electron DevicesJournal of Semiconductors等期刊编委,IEDMIEEE-NANOEDTMCSTIC重要国际会议的技术委员会成员IEEE高级会员。


招生/招聘信息:本课题组每年招收2-4名博士/硕士研究生,常年招聘器件、工艺、芯片等方向博士后,同时也非常欢迎感兴趣的本科生参与科研。详情请附上简历咨询jtang@tsinghua.edu.cn.


Prof. Jianshi Tang is currently an Associate Professor in the School of Integrated Circuits at Tsinghua University. Prof. Tang received his BS degree from the Department of Microelectronics and Nanoelectronics at Tsinghua University in 2008, and his PhD degree in Electrical Engineering from University of California, Los Angeles (UCLA) in 2014. From 2015 to 2019, he worked at IBM T. J. Watson Research Center, after which he joined Tsinghua University in 2019. He received many awards including Tsinghua University Excellent Young Faculty Award, MIT TR35 China, CIE Natural Science Award, NT18 “Best Young Scientist Award”, IEEE Brain Best Paper Award, IBM Invention Achievement Award. His main research areas include emerging memory and neuromorphic computing, and monolithic 3D heterogeneous integration, etc. He has been PI/co-PI of several research projects funded by NSFC, MOST, BNRist, and Tencent. Over the past 10 years, Dr. Tang has published more than 160 articles and proceedings in top journals and international conferences, such as Nature, Science, Nature Nanotechnology, Nature Electronics, Nature Materials, IEDM, VLSI, ISSCC, etc. His work has been cited over 10000 times, and been included in the list of “Best Papers in Beijing Area”. He has also filed more than 180 patent applications, and have been granted over 60 patents. Prof. Tang is an Editor for IEEE Transactions on Electron Devices, Associate Editor for Frontiers and serves on the Editorial Board of Journal of Semiconductors and Electronics. He is an IEEE senior member, and served as Technical/Executive Committee Member for several international conference, including IEDM, IEEE-NANO, EDTM, CSTIC, etc.


Group Openings: Our group has openings for 2-4 PhD/Master students every year and regularly recruit postdocs with related background in materials, devices, nanofabrications and chips. Undergraduate students are also encouraged to participate in our research. For more information, please email jtang@tsinghua.edu.cn with your CV.


近期代表性工作(通讯/一作)Representative Publications (as correspondence/first author):

[1] H. Zhao, Z. Liu, J. Tang*, B. Gao, Q. Qin, J. Li, Y. Zhou, P. Yao, Y. Xi, Y. Lin, H. Qian, H. Wu, “Energy-Efficient High-Fidelity Image Reconstruction with Memristor Arrays for Medical Diagnosis”, Nature Communications, 14, 2276 (2023).

[2] Y. Du, J. Tang*, Y. Li, Y. Xi, B. Gao, H. Qian, H. Wu, “Monolithic 3D Integration of FeFET, Hybrid CMOS Logic and Analog RRAM Array for Energy-Efficient Reconfigurable Computing-In-Memory Architecture”, VLSI, T15-4 (2023).

[3] X. Li, Y. Zhong, H. Chen, J. Tang*, X. Zheng, W. Sun, Y. Li, D. Wu, B. Gao, X. Hu*, H. Qian, H. Wu*, “A Memristors-based Dendritic Neuron for High-Efficiency Spatial-Temporal Information Processing”, Advanced Materials, 2203684 (2023).

[4] Y. Zhong, J. Tang*, X. Li, X. Liang, Z. Liu, Y. Li, Y. Xi., P. Yao, Z. Hao, B. Gao, H. Qian, H. Wu*, “A Memristor-based Analogue Reservoir Computing System for Real-Time and Power-Efficient Signal Processing”, Nature Electronics, 5, 672-681 (2022). (Selected as Editorials)

[5] X. Liang#, Y. Zhong#, J. Tang*, Z. Liu, P. Yao, K. Sun, Q. Zhang, B. Gao, H. Heidari*, H. Qian, H. Wu*, “Rotating Neurons for All-Analog Implementation of Cyclic Reservoir Computing”, Nature Communications, 13, 1549 (2022). (Featured in Nature Communications Editors’ Highlights)

[6] R. An#, Y. Li#, J. Tang*, B. Gao, Y. Du, J. Yao, Y. Li, S. Wen, H. Zhao, J. Li, Q. Qin, Q. Zhang, S. Qiu, Q. Li, Z. Li*, H. Qian, H. Wu*, “A Hybrid Computing-In-Memory Architecture by Monolithic 3D Integration of BEOL CNT/IGZO-based CFET Logic and Analog RRAM”, IEDM Tech. Dig., 18.1.1-18.1.4 (2022).

[7] X. Mou, J. Tang*, Y. Lyu, Q. Zhang, S. Yang, F. Xu, W. Liu, M. Xu, Y. Zhou, W. Sun, Y. Zhong, B. Gao, P. Yu*, H. Qian, H. Wu, “Analog Memristive Synapse based on Topotactic Phase Transition for High-Performance Neuromorphic Computing and Neural Network Pruning”, Science Advances, 7, abh0648 (2021).

[8] Y. Zhong, J. Tang*, X. Li, B. Gao, H. Qian, H. Wu*, “Dynamic Memristor-based Reservoir Computing for High-Efficiency Temporal Signal Processing”, Nature Communications, 12, 408 (2021).

[9] Y. Li, J. Tang*, B. Gao, J. Yao, Y. Xi, Y. Li, T. Li, Y. Zhou, Z. Liu, Q. Zhang, S. Qiu, Q. Li, H. Qian, H. Wu*, “Monolithic 3D Integration of Logic, Memory and Computing-In-Memory for One-Shot Learning”, IEDM Tech. Dig., 21.5.1-21.5.4 (2021).

[10] H. Zhao, Z. Liu, J. Tang*, B. Gao, Y. Zhou, P. Yao, Y. Xi, H. Qian, H. Wu*, “Implementation of Discrete Fourier Transform using RRAM Arrays with Quasi-Analog Mapping for High-Fidelity Medical Image Reconstruction”, IEDM Tech. Dig., 12.4.1-12.4.4 (2021).

[11] X. Li#, J. Tang#, Q. Zhang#, B. Gao, J. Joshua Yang, S. Song, W. Wu, W. Zhang, P. Yao, N. Deng, L. Deng, Y. Xie, H. Qian, H. Wu*, “Power-Efficient Neural Network with Artificial Dendrites”, Nature Nanotechnology, 15, 776 (2020).

[12] Z. Liu, J. Tang*, B. Gao, X. Li, P. Yao, Y. Lin, D. Liu, B. Hong, H. Qian, H. Wu*, “Multi-Channel Parallel Processing of Neural Signals in Memristor Arrays”, Science Advances, 6, eabc4797 (2020).

[13] Z. Liu, J. Tang*, B. Gao, P. Yao, X. Li, D. Liu, Y. Zhou, H. Qian, B. Hong*, H. Wu*, “Neural Signal Analysis with Memristor Arrays Towards High-Efficiency Brain-Machine Interfaces”, Nature Communications, 11, 4234 (2020).

[14] J. Tang#, F. Yuan#, X. Shen#, Z. Wang, M. Rao, Y. He, Y. Sun, X. Li, W. Zhang, Y. Li, B. Gao, H. Qian, G. Bi, S. Song, J. Joshua Yang*, H. Wu*, “Bridging Biological and Artificial Neural Networks with Emerging Neuromorphic Devices: Fundamentals, Progress, and Challenges”, Advanced Materials, 31, 1902761 (2019).

[15] Y. Lin, Q. Zhang, J. Tang*, B. Gao, C. Li, P. Yao, Z. Liu, J. Zhu, J. Lu, S. X. Hu, H. Qian, H. Wu*, “Bayesian Neural Network Realization by Exploiting Inherent Stochastic Behavior of Analog RRAM”, IEDM Tech. Dig., 14.6.1-14.6.4 (2019).

[16] J. Tang*, Q. Cao, G. Tulevski, K. Jenkins, L. Nela, D. Farmer, S.-J. Han*, “Flexible CMOS integrated circuits based on carbon nanotubes with sub-10 ns stage delays”, Nature Electronics, 1, 191 (2018).

[17] L. Nela#, J. Tang#*, Q. Cao, G. Tulevski, S.-J. Han*, “Large-Area High-Performance Flexible Pressure Sensor with Carbon Nanotube Active Matrix for Electronic Skin”, Nano Lett., 18, 2054 (2018).

[18] S.-J. Han#*, J. Tang#, B. Kumar, A. Falk, D. Farmer, G. Tulevski, K. Jenkins, S. Oida, J. Ott, J. Hannon, W. Haensch, “High-Speed Logic Integrated Circuits with Solution-Processed Self-Assembled Carbon Nanotubes”, Nature Nanotech., 12, 861 (2017).